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ABSTRACT
Representation learning of protein 3D structures is challenging and
essential for applications, e.g., computational protein design or pro-
tein engineering. Recently, geometric deep learning has achieved
great success on non-Euclidean domains. Although protein can be
represented as a graph naturally, it remains under-explored mainly
due to the significant challenges in modeling the complex represen-
tations and capturing the inherent correlation in the 3D structure
modeling. Several challenges include: 1) It is challenging to extract
and preserve multi-level rotation and translation invariant informa-
tion during learning. 2) Difficulty in developing appropriate tools
to effectively leverage the input spatial representations to capture
complex geometry across the spatial dimension. 3) Difficulty incor-
porating various geometric features and preserving the inherent
geometry relations. In this work, we introduce geometric bottleneck
perceptron, and a general SO(3)-equivariant message passing neural
network built on top of it for protein geometric representation
learning. The proposed geometric bottleneck perceptron can be in-
corporated into diverse network architecture backbones to process
geometric data in different domains. This research shed new light
on geometric deep learning in 3D structure studies. Empirically, we
demonstrate the strength of our proposed approach on three core
downstream tasks, where our model achieves significant improve-
ments and outperform existing benchmarks. The implementation
is available at https://github.com/knowledge-anonymous/rev
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1 INTRODUCTION
Proteins, as the building blocks for all livings organisms, play a
critical role in fundamental biological processes and attract great
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Figure 1: Different views of the 3D structure of a protein. a).
cartoon view b). line view and c). surface view of a protein’s
structure.

interest from different domains. Investigating the geometric struc-
ture of these macromolecules is key to understanding protein re-
action mechanisms in the biological process and enhancing drug
design. The recent technical advance in deep learning, especially
the successful application of GNNs to model graph structures [28],
makes the learning from the protein structures have seen sharply
growing popularity over the last few years. Several promising re-
sults achieved by convolutional neural networks and graph neural
network-based methods to understand protein structure, includ-
ing Computational Protein Design (CPD) [9, 11], Ligand Binding
Affinity (LBA) [17, 25], and Protein Structure Ranking (PSR) [25].

The recent work demonstrated the potential ability of GNN to
learn from the protein structure. Despite recent progress, there are
still several challenges that remain under-explored. First of all, ef-
fectively leveraging the spatial input information to capture
complex geometry across the spatial dimension dynamically
remains an open problem. Although it is natural to model 3D
protein structure representation as a graph, directly adopting the
existing GNNs to handle protein 3D structures may not be sufficient
enough to capture the ubiquitous multi-level structural information
during learning. Therefore, it is not tuned to capture the interaction
between amino acids that are spatially close but further in sequen-
tial location. Currently, the de facto choice for the geometric deep
learning for 3D structures is graph neural networks [6, 11]. Mes-
sage passing neural network learns the distant nodes’ information
by aggregating the messages from direct neighbors and stacking
GNN layers. Many previous works have already identified some
existing problems with the message passing paradigm, including
the problem of over-smoothing when the GNN is deep with many
layers and over-squashing when the message passing is relying on
long-range interactions [1]. How to flow the information among the
graph network efficiently without information distortion is crucial
for geometric deep learning. There remains a need for an improved
propagation method for GNNs to handle complex 3D geometric
data.
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Secondly, difficulty in discovering and preserving differ-
ent leveled geometric features between node/edge and graph
spectra. The geometric representations are composed of mutually
related edge and node features. The representation learning of the
protein structure should not only rely on the node, but also on the
edge features. Moreover, the scalar and vector features for nodes
and edges are mutually related, so a module with the ability to learn
scalar and vector features jointly is essential for the model to cap-
ture the geometric representation from the natural protein graph.
For instance, the overall protein backbone is represented by a set of
Cα-CO – NH – Cα coplanar units. Multiple conformations can be
generated with the rotation of one coplanar unit because the chem-
ical bonds around the coplanar unit will rotate accordingly. Thus
learning the protein structure representations not only requires the
network to process the geometric features simultaneously but also
preserve both nodes/edges and graph level information jointly.

Lastly, it remains challenging to capture the non-local rela-
tions and abstract feature maps in large complex 3D protein
structures. Existing works [9, 11] typically use GNN-based meth-
ods. As shown in Figure 1, one protein contains thousands of amino
acids. The folding and intramolecular binding of the protein amino
acid sequences forms the protein 3D geometric structures. The
amino acids pairs that are sequentially far apart might be spatially
in contact. Thus the problem radius, which is the required range of
interaction between nodes in the graph to be solved, is comparably
large for the protein geometric graph. Figure 1 (b) shows the 3D
structure of one protein, where the line shows where bonds con-
nect the atoms. Since the protein as a specific type of graph is very
long in sequence and complex, the messages from non-adjacent
nodes might need to propagate across the whole network. The large
protein graphs have limited the approaches to model the protein
3D structures. The requirement to learn long-range dependencies
and complex structural properties largely hardens our task.

We propose a novel graph neural network for geometric graph
representation learning to solve the challenge of capturing complex
geometry across the spatial dimension and integrating vector and
scalar features. Specifically, a novel Geometric Bottleneck Perceptron
(GBP) is proposed for integrating the scalar and vector features and
strengthening the shared low-level representations with a reduced
parameter space in the module. GBP is a general drop-in structure
that applies to various domains where geometric information is
present. Furthermore, we introduce a GBP-based Equivariant Mes-
sage Passing Neural Network (GBP-GNN) for protein 3D structural
representation learning. This model can aggregate the complex
spatial information in feature space to capture the geometric pat-
tern and increase the model’s scalability. We summarize our main
contribution as follows:

• A new SO(3)-equivariant message passing neural net-
work is proposed.We propose a new versatile framework
for protein geometric representation learning. Our SO(3)-
equivariant message passing network supports a variety of
geometric representation learning tasks.

• A novel drop-in module for geometric representation
learning is proposed.We propose a novel Geometric Bottle-
neck Perceptron (GBP) to integrate the geometric features and
capture the complex geometric relations in the 3D structure.

The outputs of the GBP module are equivariant to graph ro-
tation and translation. Most importantly, this design allows
the model to scale up to stack more GNN layers, allowing the
graph to learn representations from larger receptive fields.

• Comprehensive experiments were conducted. Compre-
hensive experiments on three datasets with three protein
representation learning tasks validate that GBP-GNN is ca-
pable of learning geometric relations in protein structure for
various downstream tasks and outperforms the state-of-the-
art methods.

2 RELATEDWORK
2.1 Geometric Deep Learning
The interest in processing graph data with Graph Neural Networks
(GNNs) is increasing over the years [7, 14, 28]. Modeling the geo-
metric structures as a graph without losing geometric properties
attracted a significant amount of attention [6, 7]. In recent years,
graph structures show impressive results on complex protein struc-
ture tasks such as rigid protein docking [6], protein interface pre-
diction [25], mutation stability prediction [25], protein structure
ranking [25]. The representative efficiency of graphs also allows
researchers to investigate structures at a fine-grained level. While
representing proteins with residue level resolution is effective, it is
also possible to represent them as atoms. Using atoms to represent
proteins have advantages including, generalized structure and ease
of transferring information from other problems [10]. Therefore,
studying the proteins with atom level graphs has been explored as
ways to improve the representation power of the graph potentially
[4, 8, 10]. [4] presented a hierarchical network that initially repre-
sents proteins with all atoms then aggregates the information to𝐶𝛼
atoms. Similarly, [8] proposed to represent proteins as multi-level
atom graphs.

2.2 Equivariant Graph Neural Networks
The properties of graph representations can change with graph
translation, rotation, and permutation. The GNN is permutation
equivalent networks by their design [14]. Although it is possible
to introduce various transformations to the network by data aug-
mentation, it is computationally inefficient. Recent works [5, 6, 23]
tackle this problem with equivariant network architectures. [5] pro-
posed high performance SE(3)-equivariant Transformer networks.
More recently, [6] SE(3)-equivariant graph matching networks with
competitive results and inspiring speedups on rigid protein docking
problems.

2.3 Representation Learning on Protein
Structure

Several core tasks rely on the structural information of the proteins
and explore the representation of the protein structures. The pri-
mary purpose of Computational Protein Design (CPD) [9, 11] is to
design a protein with desired structure and functions. [9] proposed
Structured Transformer, a conditional generative model for gener-
ating sequences based on the structure and sequence priors. [11]
explore the GNN approach to tackle this problem.
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Another line of protein representation learning work is Ligand
Binding Affinity (LBA) [17, 25], which aims to predict drug-target
binding for potential drug discovery and drug screening. [21] pro-
posed a convolutional neural network architecture that relies on
sequential information to predict the affinity. The proceeding works
[17, 19] show that learning from structure rather than the sequence
is more effective. In [19] the author proposed a hybrid model that
processes the protein sequence and ligand structure separately to
predict the protein-ligand binding affinity. A more effective frame-
work [17] takes advantage of the 3D geometric information of the
drug-target interaction complex and shows superior performance.

The PSR task, also known as Model Quality Assessment, evalu-
ates the generated protein structure. Over the years, many frame-
works are adapted and proposed [3, 10, 12, 15, 20, 22, 26, 29] to
tackle this problem. [12] introduced geometric structural scoring
function for protein 3D structure. [22] propose a performant 3D
Convolutional Networks (CNNs) with the local and global scoring
scheme. [22] used residue-wise local orientations to learn the local
structures for protein structure ranking.

3 PRELIMINARIES
The protein is a sequence of amino acids where each amino acid
contains four backbone atoms and a set of side-chain atoms. The
sequence of amino acids folds into a unique structure to form a
protein tertiary structure, which defines its properties and func-
tions. It is crucial to represent this structural information without
handcraft features to avoid bias. Therefore, we map these geomet-
ric structures to graph representations invariant to rotation and
translation transformations. In this section, we first introduce the
notation and generation process for the SE(3)-equivariant protein
representations, then formulate the three tasks used to evaluate the
proposed representation learning model.

We formulate the protein structure into graph representation,
where each input protein as a graph G = (V, E, E, F).V is the set
of 𝑁 nodes in the graph representing amino acid residues, and E ⊆
V×K is the set of edges that connects the nodes. TheK denotes the
maximum number of edges per node used to generate the k-Nearest
Neighbor (kNN) graph. The kNN graph is constructed based on the
3D coordinates of the set of points 𝐾 = {(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) |𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ∈ R}
that corresponds to the coordinates of Cα atoms.

The node features E include scalars features and vector features
(𝑠𝑛,𝑉𝑛). The scalar features 𝑉𝑛 ∈ R𝑂 include identity embedding
and dihedral angles. The vector features of the nodes 𝑉𝑛 ∈ R3×𝑃

includes orientation of a node with previous and next nodes in
sequential orders.

Similarly, we denote the edge features F as scalar and vector
features (𝑠𝑒 ,𝑉𝑒 ) ∈ E. The scalar features, 𝑠𝑒 ∈ R𝑅 , are the euclidean
distance of two nodes. The vector features, 𝑉𝑒 ∈ R3×𝐷 , include
information associated with 3D coordinates such as direction unit
vectors. The direction unit vectors are produced by calculating the
difference between two nodes then normalized to get a unit vector.

Geometric Graph Representation Learning for protein aims to
design a model that could enhance the quality of spatial encodings
and capture the hierarchical and geometrical patterns in the protein
complex structures for downstream tasks. With this aim in mind,
we introduce the three tasks first:

Definition 3.1. Computational Protein Design (CPD). Given a
protein with 3D structure and sequential information until given
position, our goal is to model the next token in the protein sequence.
This operation is repeated iteratively from the first position to
the last position. Hence, the model only predicts the full protein
sequence from structural information as a multi-class classification
task. We formulate this problem as F𝐶𝑃𝐷 : 𝑝 (𝑆𝑖 |𝑆 𝑗 :𝑗<𝑖 ,G).

Definition 3.2. Protein Structure Ranking (PSR). Given a pre-
dicted/ generated 3D protein structure, our goal is predicting its’
quality. The quality of a protein structure is defined as the proba-
bility of a given structure being a real protein structure. When the
crystallized protein structure is not available, this task is crucial
to estimate the accuracy of the predicted structure. Therefore, it
is a regression task to estimate a single value from a protein 3D
structure. We formulate this problem as F𝑃𝑆𝑅 : 𝑝 (𝑟 |G), where 𝑟 is
the quality score of the 3D structure by the model.

Definition 3.3. Ligand Binding Affinity (LBA). Given the struc-
ture of a protein and a ligand such as a drug or inhibitor, we predict
the binding affinity of the protein-ligand complex. Predicting the
binding strength of the complex is a classical graph regression
task. This task is essential for drug discovery and drug screening
purposes. We formulate this problem as F𝐿𝐵𝐴 : 𝑝 (𝑎 |G), where 𝑎
denotes the binding affinity of the complex.

4 METHODOLOGY
This section presents the proposed GBP-GNN model for geometric
representation learning of the protein 3D structures. We first de-
scribe the overall SO(3)-equivariant message passing framework to
model the geometric properties in the graph. Then we introduce
the details for the GBP module to incorporate structural scalar and
vector features into the model. Finally, we show how to integrate
our proposed GBP-GNN into the representation learning process
on regression and classification tasks.

4.1 Model Construction
Learning the geometry properties of complex protein structures is a
challenging problem. Our study’s goal of representation learning is
to learn the representation 𝐹 of a graph embedded with the geomet-
ric structural information and satisfies several facets for analyzing
and performing downstream tasks, including strong discriminative
power and equivariant properties. Several challenges need to be
tackled to achieve this goal, including: 1) Difficulty in leveraging
the different types and levels of geometric information in nodes
/edges and graph spectra. 2) Difficulty in capturing the complex
geometry across the spatial dimensions. 3) Difficulty in designing a
versatile framework for wide ranges of geometric representation
learning tasks.

To rectify the above challenges, we propose a novel Geometric
Bottleneck Perceptron - based Graph Neural Network (GBP-GNN)
to model the protein 3D structure. As shown in Figure 2, the over-
all architecture is composed of three main components. We first
construct the geometric graph in the embedding space by encod-
ing the 3D structure as rotation invariant scalars 𝑠 and geometric
vectors 𝑉 for both nodes and edges in the graph. Then we propose
a novel GBP-GNN architecture as the second component in Fig-
ure 2-b. This geometric neural network can be stacked by 𝑁 -th
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Figure 2: The architecture of the proposed GBP-GNN framework. It has three main components: (a) graph construction from
a 3D protein structure, (b) a Geometric Bottleneck Perceptron-based GNN for 3D structural representation learning, and (c)
downstream tasks for prediction.

layers and used as an encoder to learn the latent representation
of the geometric features or decoder to decode the learned latent
representations for downstream tasks in the network. For the last
component, we present the downstream tasks’ application by two
categories: classification tasks and regression tasks.

4.2 Geometric Bottleneck Perceptron
In order to extract information from protein 3D structures and
keep the native structure of the features intact, we model the 3D
graph representations invariant to their orientations. For each node
or edge in the 3D graphs, its multi-level geometry information is
featured by a tuple (𝑠,𝑉 ). The scalar features 𝑠 include relative
distance and positional distance, and the vector features 𝑉 include
unit vectors of orientations, the direction of the side chains, and
edge directions, as illustrated in Figure 3(a). Since the geometry
information includes both scalar and vector features, it is natural
to model them separately by different channels. However, each
type of representation is mutually related to express the complete
geometric information. Here we take advantage of the expressive
power of our proposed GBP module to ensure that this property
holds throughout the processing pipeline. The scalar and vector
features (𝑠,𝑉 ) for both nodes and edges are processed separately by
the scalar channel and vector channel and incorporated by the GBP
module to return updated scalar and vector feature representations.
The goal of the GBP is to learn a mapping function F : (𝑠,𝑉 ) −→
(𝑠 ′,𝑉 ′) with invariant constraints.

The architecture of the proposed GBP module is shown in Figure
3(b). For simplicity, we denote the GBP encoding process as GBP𝜆 (·)
with parameters 𝜆, where 𝜆 is a downscaling hyperparameter for the

GBP module. The expression of scalar and vector features is jointly
generated by the two mapping function F𝑉 : (𝑉 ) −→ (𝑧,𝑉 ′) and
F𝑠 : (𝑠, 𝑧) −→ (𝑠 ′) in the GBP module.

4.2.1 Expression of vector representations 𝑉 . The key point of the
vector representation path is to aggregate vector features into a
latent representation that is permutation and rotation equivariant
to pass to the scalar path. For each node or edge vector feature,
GBP generate the latent representation 𝑧 as Eq. (1). Thus the input
feature vector 𝑉 with representation depth 𝑟 is downscaled by 𝜆.

𝑧 = {𝑣 ·𝑤𝑑 |𝑤𝑑 ∈ R𝑟×𝑟/𝜆} (1)

To generate the vector representation 𝑉 ′, the GBP transform 𝑧

into representation of depth 𝑟 ′, which is the depth of the 𝑉 ′. The
intermediate representation 𝑉𝑢 is calculated by parameter 𝑤𝑢 as
Eq. (2).

𝑉𝑢 = {𝑧 ·𝑤𝑢 |𝑤𝑢 ∈ R𝑟/𝜆×𝑟
′
} (2)

Then GBP updates the vector representation by gating operation
defined in Eq. (3) to generate the updated vector representation 𝑉 ′.

𝑉 ′ = 𝑉𝑢 ⊙ 𝜎𝑣 ( | |𝑉𝑢 | |2) (3)
where𝜎𝑣 is the non-linearity applied to 𝐿2 norm of𝑉𝑢 and ⊙ denotes
the element-wise multiplication. When 𝜎𝑣 is a sigmoid function,
this operation acts as a gating mechanism for the intermediate
representation 𝑉𝑢 .

4.2.2 Expression of scalar representations 𝑠 . For geometric repre-
sentation learning, it is essential to jointly integrate the vector
and scalar features to aggregate the geometric information flow in
the graph. Each node or edge scalar feature is updated by fusing
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Figure 3: The proposed Geometric Bottleneck Perceptron with
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and edge representations of protein graph, (b) the detailed
architecture of Geometric Bottleneck Perceptron.

the latent vector feature 𝑧 from the vector representation path to
fully model the relation and geometry information in the graph.
The aggregation operation of the scalar and transformed vector
information in the scalar channel can be written as:

𝑠 (𝑠,𝑧) = | |𝑧 | |2 ∪ 𝑠 (4)

where | | · | |2 denotes the 𝐿2 norm. We denote 𝑡 as the representation
depth of 𝑠 . Then 𝑠 (𝑠,𝑧) ∈ R𝑡+𝑟/𝜆 with the depth of (𝑡 + 𝑟/𝜆) is
projected to 𝑠 ′ with representation depth 𝑡 ′ as shown in Eq. (5).

𝑠 ′ =
{
𝜎𝑠 (𝑠 (𝑠,𝑧) ·𝑤𝑠 ) |𝑤𝑠 ∈ R𝑡+𝑟/𝜆×𝑡

′}
(5)

where 𝜎𝑠 denotes the non-linearity, and𝑤𝑠 is learnable parameter
that performs the linear transformation.

The GBPmodule aggregates complex spatial and geometric prop-
erties and generates the updated tuple (𝑠 ′,𝑉 ′) with the expression
of vector and scalar representations jointly. The GBP module can
be stacked 𝜔 times to further enhance the feature blending and ex-
pressiveness of the geometric feature representations in the neural
network.

4.3 GBP-GNN for 3D graphs
In this section, we propose a SO(3)-equivariant message passing
neural network framework to work with GBP for the protein repre-
sentation learning in detail. The main components of our proposed
GBP-GNN are geometric graph convolution and geometric position-
wise feed-forward operations. Both components process the scalar

and vector channels by GBP with inter-channel communication
throughout the network.

4.3.1 Geometric Graph Convolution. Unlike defining the geometry
of the 3D structure in terms of Cartesian coordinates of nodes, the
GBP-GNN represents the geometry information by the orientation
of the nodes and different types of the distance between the nodes to
achieve the goal of node permutation invariant and graph rotation
equivariance. Although such a choice of representation meets the
equivariance constraints, a new neural network design is needed
to maintain the expressive power without losing the geometric
information during the graph message passing operations.

For node 𝑥𝑖 , we denote 𝑁 (𝑖) as the neighbor nodes of node 𝑥𝑖 .
The neighbors can be selected with different methods, including
k-Nearest Neighbors and the nodes within a given radius. Since
distance is an important factor in defining the influence between
nodes, it effectively reduces the complexity. Thus a single layer of
the proposed geometric graph convolution layer can be written as
Eq. (6).

𝑥𝑘𝑖 = 𝜙𝑘
(
𝑥𝑘−1
𝑖 , F∀𝑗 ∈N(𝑖)Ω

𝑘
𝜔 (𝑥𝑘−1

𝑖 , 𝑥𝑘−1
𝑗 , 𝑒𝑖, 𝑗 )

)
(6)

where 𝜙 denotes the differentiable function, F denotes the permu-
tation invariant aggregation function, 𝑘 denotes the depth of the
network and Ω𝜔 denotes the message generation function gener-
ated by 𝜔-th GBP layers. The geometric graph convolution can be
detailed into the following four steps.

First, for the neighbor nodes 𝑖 and 𝑗 with their connection infor-
mation 𝑒𝑖, 𝑗 , the message flow regarding to the target node 𝑖 and the
neighbor node 𝑗 at the first layer can be written as:

Ω̄𝑘 = GBP(𝑒𝑘−1
𝑖, 𝑗 ∪ 𝑥𝑘−1

𝑖 ∪ 𝑥𝑘−1
𝑗 ) (7)

where ∪ denotes the concatenation operation. Both vector and
scalar representations are concatenated then integrated by the GBP
layer.

Next, for the messages generated by 𝜔-th layer, Ω̄𝑘 is recur-
sively generated by GBP until 𝜔-th iteration. The output of the Ω𝑘

𝜔

function is calculated with Eq. (8)

Ω𝑘
𝜔 = GBP(Ω𝑘

𝜔−1) (8)

where Ω𝑘
𝜔 denotes output of recursion with 𝜔-th iteration. The

message function generates messages for each node in the graph.
Then, to get the updated node features 𝑥𝑘

𝑖
, the generated mes-

sages are aggregated by F shown in Eq. (9).

F (G(V, E)) = 𝑓 {Ω𝑘
𝜔,𝑣𝑖

|𝑣𝑖 ∈ V} (9)

where 𝑓 is a permutation invariant function including MEAN, SUM
or MAX to aggregate the generated messages.

Lastly, the updated node features is calculated by Eq. (10) as:

𝜙𝑘 (𝑥𝑘−1) = 𝑥𝑘−1 + 𝑥𝑘−1 (10)

where 𝜙𝑘 (·) denotes the output of geometric graph convolution
block and the skip-connection is utilized among different geometric
convolution blocks to allow the non-synchronicity of changes in
the feature representation space.
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4.3.2 Position-Wise Feed-Forward Network. A position-wise feed-
forward network follows each geometric graph convolution block.

For each node 𝑥 a linear function with shared weights is applied
to make the latent representation independent of the size of the
input. At this step, we construct a position-wise representation
interaction by applying linear functions with shared weights to all
nodes. Then 𝑝 layers of GBP are applied to get the updated vector
and scalar representations as: 𝑧𝑘𝑝 = 𝐺𝐵𝑃 (𝑧𝑘

𝑝−1).
The final output of the position-wise feed-forward network is

calculated by applying 𝜙 (·) to the updated feature representation
𝑧𝑘𝑝 as:

𝑥𝑘 = 𝜙𝑘
(
𝐺𝐵𝑃 (𝑧𝑘𝑝−1)

)
(11)

4.4 Graph Classification Task
The overall framework for the classification task is based on an
encoder-decoder structure composed of 𝛾-th encoder layers and 𝛿-
th decoder layers. The encoder layers learn the latent representation
of the geometric features, and the decoder layers decode the learned
latent representations for classification tasks on either node /edge
level or graph level.

For the CPD task, all structural information is available to the
model regardless of the target node. However, the sequential in-
formation is restricted to use only for nodes before a given nodes’
position. Therefore, this special case of a graph node classification
task is auto-regressive based on the availability of the sequential
information conditioned to the target’s position [9] [11]. The model
masked out the edges in the graph that connect the target node
to the nodes after the target to prevent information leakage. The
structural information is passed from the 𝛾-th encoder layers to de-
coder layers with auto-regressive sequence information encoded to
the edges. The stack 𝛿 layers of decoder updates the node features
to 𝑥𝛾+𝛿 before prediction. In order to make the predictions, a fully-
connected linear layer reduces the channel dimension to 20, where
each dimension represents one of the 20 amino acids. Hence, the out-
put of each node resembles the probability amino acid identity. CPD
task uses cross-entropy loss function L(𝑦, 𝑝) = −∑𝑐

𝑖 𝑦𝑖 ∗ 𝑙𝑜𝑔(𝑝𝑖 ) to
measure the model’s performance for training, where c denotes the
number of classes, 𝑦𝑖 is one for the correct amino-acid class and 𝑝𝑖
is the prediction of 𝑦𝑖 . Since one residue can only have one identity,
𝑦 contains only one true value per amino acid.

4.5 Graph Regression Task
For the graph regression task, the model aims to predict a single
real-valued attribute of the input 3D graph. The overall framework
for the graph regression task is composed of two components: the
encoding layers and the prediction layers. The model first incorpo-
rates geometric scalar and vector features by𝛾 number of geometric
neural network layers as encoder layers. Then the updated latent
scalar node representations 𝑠𝛾 will pass to the prediction layers as:

𝑝 = 𝑈

(
1

| |V||
∑︁

(𝑠,𝑉 ) ∈E 𝑠
𝛾

)
(12)

where the function 𝑈 (·) can be implemented by the Multi-Layer
Perceptrons (MLPs).

For the PSR task, the model predicts a score as the quality of the
provided protein 3D structure. For the LBA task, the model predicts

the binding strength based on the given protein and drug interaction
complex. The mean squared error loss function L𝑟 = (𝑦 − 𝑝)2 is
used to evaluate the model’s performance for both of the graph
regression tasks, where𝑦 is the desired property value of the ground
truth and 𝑝 is the prediction of the model.

5 COMPLEXITY ANALYSIS
Our proposed model stacks the geometric graph convolution net-
work with a position-wise feed-forward network. The time com-
plexity of the geometric graph convolution network in terms of the
forward passes is Θ(𝑀𝐷2), where𝑀 is the number of edges, and
𝐷 is the representation depth. The geometric graph convolution
network is followed by the position-wise feed-forward network
with Θ(𝑁𝐷2) time complexity, where 𝑁 is the number of nodes.
Hence the overall time complexity isΘ(𝑀𝐷2+𝑁𝐷2). The proposed
GBP block with bottleneck reduces the representation 𝐷 by 𝜆 times.

6 EXPERIMENT
In this section, we evaluate our proposed GBP-GNN on three core
tasks in geometric representation learning of protein 3D structures:
CPD, PSR and LBA. In addition to their diversity in the required task
output and real-world use cases, these three tasks span different
use cases of our proposed geometric message passing framework:
CPD is a classification task, and PSR and LBA are regression tasks.
The experiments are conducted on 8x Nvidia A100 GPUs with 40
GB memory. The design choices and hyper-parameters are further
discussed in the supplementary material.

6.1 Dataset
Classification of Protein Structures Dataset: The CATH dataset
used in CPD is constructed based on the hierarchical classification
of protein structure (CATH) [24]. All the chains from the test set
with the same CATH topology classification are removed from
train and validation splits to avoid imbalanced dataset bias. In the
experiments, we used 80%, 10%, 10% splits following the previous
work [9] to test our model. After the filtering, there were 18024
chains in the training set, 609 chains in the validation set, and 1120
chains in the test set.
Protein Structure Ranking Dataset: The PSR dataset is a collec-
tion of predicted 3D models submitted to CASP [16] competition.
The predicted models are evaluated against experimentally ob-
served native protein structures by the global distance test (GDT_TS).
The dataset contains predictions and targets submitted in nine CASP
competitions. We follow the same dataset splits as previous work
[25].
Ligand-Binding Affinity Prediction Dataset: The LBA dataset is
generated from the PDBBind database [18] with the corresponding
binding strength of the protein and ligand interaction complex.
PDBBind database is a collection of experimentally measured bind-
ing affinity data for drug and target interaction complexes. We
follow the same splits used in previous work [25].

6.2 Benchmarks
The proposed methods is compared with the state-of-art methods
for all three tasks.
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Table 1: Comparison of the proposed GBP-GNN with the
benchmarks on the CPD task.

Perplexity ↓ Recovery ↑
Method Short Single All Short Single All

STran [9] 8.54 9.03 6.85 28.30 27.60 36.40
SGNN [11] 8.31 8.88 6.55 28.40 28.10 37.30
GVP [11] 7.10 7.44 5.29 32.10 32.00 40.20

GBP-GNN 6.14 6.46 5.03 33.22 33.22 42.70

• To validate the significance of the proposed GBP for PSR task,
the proposed model is compared with 3DCNN [10], ProQ3D [26],
VoroMQA [20], RWplus [29], SBROD [12], Ornate [22], DimeNet
[15], GraphQA [3], and GVP [10].

• For the LBA task, we compared the proposed model with Cor-
morant [2], 3DCNN [10], DeepAffinity [13], GIN [19], GAT [19] ,
GAT-GCN [19] and GVP [10].

• To validate the superiority of the proposed GBP for the classifi-
cation task CPD, the proposed method is compared with STran
[9], SGNN [9] and GVP [11].

6.3 Evaluation Metrics
A set of metrics are used to measure the performance of the models.
• For the CPD task, we use perplexity and recovery to evaluate
the performance of the models. The perplexity is the exponential
of the cross-entropy calculated from the model predictions. The
recovery score is calculated as Eq. (13):

Recovery = median
𝑆 ∈𝐷

( 1
| |𝑆 | |

∑︁
𝑖∈𝑆

| |𝑆𝑖 − 𝑆𝑖 | |) (13)

where 𝐷 denotes the dataset, 𝑆 denotes an amino acid sequence
within the dataset, and 𝑆 is the predicted amino acid. The absolute
error is calculated for each position 𝑖 , and averaged by dividing
the length of the sequence | |𝑆 | |.

• For the PSR task, following the previous works [3, 12, 22] the
evaluation metrics are mean and global statistical correlations.
The mean correlation is the mean of all correlation scores com-
puted for each sample. Furthermore, The global correlation is
the correlation score over the whole test dataset. The statistical
correlations are Pearson’s correlation (𝑝), Spearman’s correlation
(𝑆𝑝), and Kendall’s correlation (𝐾 ).

• Following the previous works [13, 19, 25] the evaluation metrics
for the LBA task are the rootmean square error (RMSE), Pearson’s
correlation (𝑃 ), and Spearman’s correlation (𝑆𝑝).

7 RESULT
7.1 Overall Performance
7.1.1 Computational Protein Design. Table 1 shows the compar-
isons of the GBP-GNN with the baselines on the CPD task. Our
proposed method outperforms the baseline methods on both per-
plexity and recovery scores. Furthermore, the proposed model in-
creases the perplexity of the Short and Single subset by over 15%.
The improvement of the recovery of all structures is over 8%. On
average, our model improves performance by 8%.

Table 2: Comparison of the proposed GBP-GNN with the
benchmarks on the PSR task.

PSR Local Global

Method 𝑝 ↑ 𝑆𝑝 ↑ 𝐾 ↑ 𝑝 ↑ 𝑆𝑝 ↑ 𝐾 ↑
3DCNN [25] 0.491 0.431 0.272 0.643 0.769 0.481
ProQ3D [26] 0.444 0.432 0.304 0.796 0.772 0.594
VoroMQA [20] 0.412 0.419 0.291 0.688 0.651 0.505
RWplus [29] 0.192 0.167 0.137 0.033 0.056 0.011
SBROD [12] 0.431 0.413 0.291 0.551 0.569 0.393
Ornate [22] 0.393 0.371 0.256 0.625 0.669 0.481
DimeNet [15] 0.302 0.351 0.285 0.614 0.625 0.431
GraphQA [3] 0.357 0.379 0.251 0.821 0.820 0.618
GVP [10] 0.581 0.462 0.331 0.805 0.811 0.616

GBP-GNN 0.612 0.517 0.372 0.856 0.853 0.656

Table 3: Comparison of the proposed GBP-GNN with the
baselines on the LBA task. The results are averaged over 3
independent runs.

Method RMSE ↓ 𝑝 ↑ 𝑆𝑝 ↑
ENN Cormorant [2] 1.568 ± 0.012 0.389 0.408

CNN 3DCNN [25] 1.416 ± 0.021 0.550 0.553
DeepAffinity [13] 1.893 ± 0.650 0.415 0.426

Graph GCN [25] 1.570 ± 0.025 0.545 0.533
DGAT [19] 1.632 ± 0.127 0.529 0.528
DGIN [19] 1.659 ± 0.027 0.479 0.478
DGAT-GCN [19] 1.662 ± 0.039 0.474 0.457
GVP [10] 1.594 ± 0.073 0.434 0.432

Ours GBP-GNN 1.405 ± 0.009 0.561 0.557

7.1.2 Protein Structure Ranking. Table 2 shows the performance
comparisons of the GBP-GNN on the PSR task. We present the
results in two sections, namely local and global. The local denotes
the evaluation metric is computed per target, and the results are
averaged to get final values. The global denotes evaluation metric
applied to all samples in the test set. Our model achieved the best
performance on every metric compared to all baseline methods. On
average, an improvement over local metrics was over 5% compared
to the best baseline method. Furthermore, similar improvements are
observed in global metrics, where our model improved the baselines
over 5%.

7.1.3 Ligand Binding Affinity. Table 3 shows the performance com-
parisons of the GBP-GNN on the LBA task. Our model is the only
method that outperforms the 3DCNN method. GBP-GNN improves
any other baseline approach in RMSE by more than 10%. Our model
is also more reliable than any other model presented with more
than two times lower standard deviation compared to any other
model.
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Table 4: Ablation study of proposed GBP-GNN.

Perplexity ↓ Recovery ↑
Type Ablation Parameters Δt Short Single All Short Single All

Architecture Scalar Only 1.588M 128s 7.281 7.567 7.247 28.71% 28.36% 31.99%
- Vector Projection 1.780M 146s 6.794 6.493 5.273 31.24% 33.16% 40.90%
- Vector Identity 1.677M 140s 6.157 6.486 5.026 32.20% 31.57% 42.11%

Node Features - Scalar: Dihedral 1.677M 138s 7.855 8.301 5.386 29.87% 28.57% 39.87%
- Vector: Orientation 1.677M 139s 7.124 7.392 6.206 29.55% 28.57% 36.28%
- Vector: Sidechain 1.677M 139s 6.723 6.997 5.915 31.45% 29.96% 37.92%

Edge Features - Scalar: Relative Distance 1.677M 137s 6.711 6.833 5.630 31.53% 30.43% 38.43%
- Scalar: Relative Position 1.677M 138s 6.187 6.477 5.090 32.01% 31.23% 41.49%
- Vector: Direction Unit 1.677M 141s 7.029 7.147 6.223 30.12% 29.42% 35.59%

GBP 1.677M 145s 6.144 6.458 5.025 33.22% 33.22% 42.70%

7.2 Ablation Study
In this section, we perform ablation experiments over two types
of variations of GBP to study the factors that affect the model
performance. Table 4 presents the results of our evaluations. Δt
denotes the average time to complete a training epoch in seconds.

7.2.1 Impact of the GBP expression paths. We compare the impact
of the GBP expression paths for 𝑠 and𝑉 in the GBP block, as shown
in the first row of Table 4. The Scalar Only variation removes the
(𝑉 ) paths for nodes and edges. The model performance decreases
severely on both perplexity and recovery scores. Thus the vector
expression path that interacts with scalars is essential for geomet-
ric graph representation learning. The Vector Projection variation
removes the bottleneck down-scaling and up-scaling operations
on the 𝑉 path when possible. The results show that the vector ex-
pression path with bottleneck successfully helps the model learn
the protein geometric structures. The Vector Identity variation re-
moves the element-wise multiplication is used to calculate 𝑉 ′ in
the GBP block. Although this variation performs similarly in terms
of perplexity score with our proposed model, the recovery score
decreased by 3% on average.

7.2.2 Impact of the geometric features. We compare the impor-
tance of the scalar and vector features by comparing the model’s
performance with removing one of the features. The second and
third rows of Table 4 presents the results. The most salient feature
to affect our model’s performance is the Direction Unit vector. The
Direction Unit feature provides relative orientation information of
nodes, which is an essential indicator of the folding pattern for
the protein. The absence of the Direction Unit feature reduced the
model performance by 14%. Overall, the vector features are crucial
for successfully interpreting the geometric representations. The im-
provements of the results prove the superiority of the novel design
of the vector expression path in our GBP.

7.3 Sensitivity Analysis
This section investigates the model’s hyper-parameter and dataset
size sensitivity on the CPD task.

Table 5: The parameter sensitivity analysis of the proposed
GBP-GNN model.

Perplexity ↓ Recovery % ↑
𝛾 𝛿 𝜔 PM Short Single All Short Single All

3 1 6 0.68 7.038 7.563 5.198 31.06 30.83 40.84
5 1 6 1.01 6.153 6.467 5.034 33.68 30.93 41.63
7 1 6 1.34 6.159 6.485 5.029 33.78 32.24 42.02
11 1 6 2.01 6.169 6.519 5.111 32.88 31.11 41.73

9 3 6 2.01 6.178 6.499 5.085 32.52 31.32 41.55
9 5 6 2.35 6.305 6.674 5.187 30.85 30.22 39.20
9 9 6 2.35 7.815 8.294 5.530 28.36 27.60 38.45

9 1 4 1.46 6.331 6.652 5.227 33.81 30.92 40.83
9 1 5 1.46 6.454 6.832 5.178 33.39 32.69 41.85
9 1 7 1.89 6.368 6.702 5.059 32.97 32.24 42.28
9 1 8 1.89 6.205 6.477 5.029 31.47 32.52 42.21
9 1 10 2.10 6.501 6.209 5.042 33.32 32.48 41.38

9 1 6 1.68 6.144 6.458 5.025 33.22 33.22 42.70

7.3.1 Parameter sensitivity. Table 5 shows the performance of the
proposed model with different hyper-parameters. PM stands for
the number of trainable parameters listed in millions. Each variant
of the model only changes one parameter in {𝛾, 𝛿, 𝜔} to compare
with our base model. In the first row, the variance for different
𝛾 improves the model performance slightly until nine, and then
the performance starts dropping. It is worth noting that the 𝛾 = 3
variant’s performance is still competitive and could be a lightweight
option for real-world applications. Although the change of the 𝛾 , 𝛿 ,
and𝜔 decreases the model’s performance slightly, the performances
are still better than most of the benchmark results shown in Table
1, which confirms the robustness of the design of the GBP network
architecture.

7.3.2 Dataset size sensitivity. Figure 4 presents the results for the
sensitivity of size of dataset. Figure 4 shows both perplexity and
recovery scores to explore further the relationship between the size
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Figure 4: Sensitivity analysis of the size of the dataset

of the training dataset and the model’s performance. The model
scales well with the dataset size. It is evident in Figure 4 that there
is a performance increase with the increase of the dataset size.

8 CONCLUSION
This paper focuses on learning geometric representations of the
protein structures.We present GBP-GNN, a novel SO(3)-equivariant
message passing neural network for learning the geometric rep-
resentations of proteins. Moreover, we propose a drop-in module
named Geometric Bottleneck Perceptron to integrate the geometric
features and capture the complex geometric relations in the 3D
structure. Our proposed GBP is a powerful and versatile module for
learning and representing geometric features. We demonstrate the
performance of GBP-GNN on three tasks, including Computational
Protein Design, Protein Structure Ranking, and Ligand Binding
Affinity task. The comparison with GBP-GNN and state-of-the-art
methods validates the effectiveness of the proposed architecture.
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A PROOF: ROTATIONAL TRANSFORMATION
EQUIVARIANCE

The equivariance to a graph transformation achieved by satisfying
the following property:

Q(𝑓 (𝑔)) = 𝑓 (Q(𝑔)) |∀𝑔 ∈ G (14)
where Q denotes a transformation operation, 𝑓 is a linear or

non-linear equivariant function, and 𝑔 denotes a graph. In other
words, if the result of applying Q before or after the 𝑓 we call 𝑓
equivariant to transformation Q. Hence, we prove our model is
rotation invariant by defining any rotation function Q𝑟 (𝑔):

Q𝑟 (𝑔) = R𝑔|∀R ∈ R3×3 (15)
where the rotation is applied by multiplying the input with

rotation matrix R. We construct edge and node features from 𝑔, and
represent them with scalar and vectors (𝑠, 𝑣). Therefore, we will
prove that GBP is SO(3)-equivariant, showing that both 𝑠 ′ and 𝑣 ′
are equivariant. First, 𝑠 ′ is affected by applying the rotation matrix
to (𝑠, 𝑣) from (5).

𝑠 ′ | (R𝑠,R𝑣) = 𝜎𝑠 ( | |R𝑣 ·𝑤𝑑 | |2 ∪ R𝑠 ·𝑤𝑠 ) (16)
The 𝑠 is invariant to rotations R𝑠 = 𝑠 by definition since they are
constructed from the local frame. Which reduces the problem to
show | |R𝑣 ·𝑤𝑑 | |2 is equivariant. Since | |R𝑣 ·𝑤𝑑 | |2 = R||𝑣 ·𝑤𝑑 | |2 =

| |𝑣 ·𝑤𝑑 | |2, 𝑠 ′ is invariant and therefore equivariant. Next, we show
𝑣 ′ is equivariant by applying the R to 𝑣 :

𝑣 ′ | (R𝑠,R𝑣) = (R𝑣 ∗𝑤𝑑 ∗𝑤𝑢 ) ⊙ 𝜎𝑣 ( | |R𝑣 ∗𝑤𝑑 ∗𝑤𝑢 | |2) (17)

Again, we see | |R𝑣 ∗𝑤𝑑 ∗𝑤𝑢 | |2 = | |𝑣 ∗𝑤𝑑 ∗𝑤𝑢 | |2 is invariant.
Furthermore, (R𝑣 ∗𝑤𝑑 ∗𝑤𝑢 ) is equivariant since (R𝑣 ∗𝑤𝑑 ∗𝑤𝑢 ) =
R(𝑣 ∗𝑤𝑑 ∗𝑤𝑢 ). Hence, we show both 𝑠 ′ and 𝑣 ′ is equivariant to
the Q𝑟 (𝑔).

B RESEARCH METHODS
B.1 Protein Geometric Representation
Residue Level Node Features:

• Scalar: Dihedral angles: The dihedral angles of the protein
backbone structures are essential to parameterize the protein
folding. Therefore, we computed the three dihedral angles
(𝜙,𝜓,𝜔) from C, N and C𝛼 atoms of each three consecutive
amino acids. To keep the circular property of the angles, the
𝑠𝑖𝑛 and 𝑐𝑜𝑠 values for each angle were calculated. Hence,
dihedral angles are represented with six features per amino
acid.

• Vector: Orientations: We calculate two unit vectors for for-
ward and backwards to capture local orientations based on
C𝛼 positions. The forward unit vector is normalized result
of C𝛼𝑖+1 - C𝛼𝑖 and backward unit vector is normalized result
of C𝛼𝑖−1 - C𝛼𝑖 .

• Vector: Sidechains: The direction of C𝛽𝑖 atom with respect
to C𝛼𝑖 represented by a unit vector.√︂

1
3

(𝑛 × 𝑐)
| |𝑛 × 𝑐 | |2

−
√︂

2
3

(𝑛 + 𝑐)
| |𝑛 + 𝑐 | |2

(18)

where 𝑛 = N𝑖 − Cα𝑖 and 𝑐 = C𝑖 − Cα𝑖 . This unit vector in
conjunction with the reverse and forward unit vectors are
sufficient to define the orientation of the amino acids.

Residue Level Edge Features:

• Scalar: Relative Distance Embeddings: Euclidian distances
between amino acids are essential for understanding the
interactions. However, if the absolute values are provided
to a network, it tends to memorize than learn the structure.
Therefore, we provided the approximations of these values
by using RBF kernels. The number of RBF kernels can change
based on the problem. For that purpose, we leave them as
hyper-parameter.

• Scalar: Relative Positional Embeddings: The relative distance
in amino acid location provided by relative positonal embed-
dings. The positional embeddings for each sequence location
is generated with a sinusoidal function as in Transformers
paper. Hence, for each position i and j there is a positional
embedding value 𝑃𝑖 and 𝑃 𝑗 . For each edge, relative positional
information is provided by computing 𝑃𝑖 − 𝑃 𝑗 .

• Vector: Direction Unit Vectors: The direction of the edge is
represented by the unit vectors calculated with normaliza-
tion of Cα𝑖 - Cα 𝑗 .

C PARAMETERS
We present the parameters used in GBP-GNN in this section. All
the networks trained over 300 epochs if not stated otherwise. Fur-
thermore, the one with the highest validation accuracy is selected
for testing. The network was trained with Adam optimizer with an
initial learning rate of 0.0001.

For the CPD task, we used nine encoder blocks with three de-
coder blocks. Ω calculation of encoder and decoder used eight GBP
blocks stacked recursively with 𝜆 = 4. Five encoder blocks were
used for the PSR task with𝑚 = 2. Eight encoder blocks were used
for the LBA task on the experiments with𝑚 = 2.

D BENCHMARK DETAILS
• ProQ3D [26] uses the large set of manually annotated pro-
tein structures with their deep learning framework.

• VoroMQA[20] constructs Voronoi tessellation-based esti-
mates the model quality by processing the contact areas with
statistical potentials.

• RWplus [29] uses ideal random-walk chain as the reference
state of high-resolution 3D structures.

• SBROD [12] proposes a scoring function that feeds four
hand-picked features to Ridge Regression model.

• Ornate [22] evaluates the 3D structure in local and global
stages. The local stage transforms the residue based on the
local backbone topology.

• DimeNet [15] introduces directional message passing by
using directional embeddings to achieve rotational equiv-
ariance. Furthermore, the authors show an effective way to
represent distance and angles.

• GraphQA [3] adopts graph convolutional network to pro-
tein structure ranking task. Authors Incorporated the the
domain-specific information into node and edge features.
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• GVP [11] introduces different representation shapes for geo-
metric structures and a paradigm to process them. The pro-
posed architecture is flexible and applicable to tasks with 3D
structures.

• DeepAffinity [13] proposes an RNN-CNN hybrid that takes
structurally annotated protein sequences along with ligand
SMILE sequences.

• GraphDTA [19] proposes architecture to predict affinity
using CNNs and GNNs. It processes the protein structures

with CNNs and the ligand structures with the variation of
GNNs. The GNN variants uses GCN [14], GAT [27], GIN
[28], GAT-GCN. The models’ variations are denoted with ’D’
as follows DGAT, DGIN, DGAT-GCN.

• STrans [9] proposes a transformer architecture with the
ability to process structural information. The attention mech-
anism is limited to the neighbors for a given node. The neigh-
bors were derived using the k-Nearest Neighbors graph.
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