
Author Identification of Micro-Messages via
Multi-Channel Convolutional Neural Networks

Sarp Aykent
Department of Computer Science

& Software Engineering
Auburn University
Auburn, AL, USA
sarp@auburn.edu

Gerry Dozier
Department of Computer Science

& Software Engineering
Auburn University
Auburn, AL, USA

doziegv@auburn.edu

Abstract—With the emergence use of social media, millions of
micro-messages are exchanged daily. Although micro-messages
are a powerful and efficient way to communicate among in-
dividuals, their anonymity and short-length characteristics give
rise to a real challenge for Author Identification studies. In this
paper, we tackled the Author Identification of micro-messages
problem via Convolutional Neural Networks (CNNs). Specifically,
we introduce a novel Multi-Channel CNN architecture that
processes different features of text via word and character
embedding layers, and utilizes both pre-trained word embedding
and character bigram embeddings. We examine the usefulness
of different feature types and show that the combination of
embedding layers can capture different stylometric features. We
conduct extensive experiments with a varying number of authors
and writing samples per author. Our results show that our
proposed method outperforms the state-of-the-art system on a
Twitter dataset that contains 1,000 authors.

Index Terms—Convolutional Neural Networks, Authorship
Attribution, Author Identification

I. INTRODUCTION

Author Identification [1], also known as Authorship Attribu-
tion, is the task of identifying the author of unknown text based
on stylistic information captured within a dataset of writing
samples [2]. Author Identification is used in a wide variety of
fields [3]–[7]. As the majority of Author Identification research
is focused on finding authors of long texts, the development of
social media platforms and the emergence of social media as a
primary mode of communication [7] creates a special interest
in Author Identification of micro-messages. The increase in
micro-message traffic which includes web forum posts, tweets,
and product reviews creates a massive amount of data, which
has attracted increasing attention in many fields such as social
media forensics [7]. Social media platforms such as Twitter [8]
limit the number of characters for each post (micro-message).
The research question becomes: How can we identify an
author of a single post message that has 140 characters or
less? To address the above question, we investigate a Author
Identification methods on micro-messages, as well as present
a new method that outperforms the others.

Currently, the performance of existing Author Identification
systems of micro-messages [8] is no better than a chance of
flipping the coin even with a small number of the author
set [3]. The recent development of the CNNs has shown

promising results on image classification tasks [9], [10]. One
of the difficulties of using these types of CNNs for Author
Identification is basically a representational difference [11].
The tokens of the text (character, word, etc.) are discrete and
are not convertible to values that machines can understand
[11]. Studies [12], [13] have shown that using a number of
word embedding techniques can convert words into individual
vectors. Some of these techniques include Word2Vec [12],
FastText [13], etc. In literature [8], [14]–[17], tokens other
than words could also be used as features in machine learning
algorithms for Author Identification. These tokens include
character n-grams [4], [7], [18], parts of speech [7], and
stylometry [19].

Our goal is to design a CNN architecture for identifying
the authors of micro-messages to overcome the problems
mentioned before. In the literature [7], it is shown that different
feature sets can capture a variety of stylometric features. In
light of this information, we combine word embeddings with
character embeddings under one CNN architecture to form a
Multi-Channel CNN architecture. These embedding layers can
be considered as individual information channels for a CNN.
Our preliminary results, using shared convolutional filters for
both embedding layers performed better than the state-of-the-
art methods [3].

We compare our proposed architecture with the best per-
forming state-of-art methods within the literature [3] as well
as several popular authorship attribution methods [8]. We
show that using Multi-Channel CNNs with pre-trained word
embeddings performs the best.

The remainder of the paper is as follows. Section II pro-
vides the necessary background and discusses related work
to this study, Section III introduces our Multi-Channel CNN
architecture for Author Identification of micro-messages. Our
experiments are presented in Section IV. In Section V we
present our results and Section VI we present our conclusions
and future work.

II. RELATED WORK

In this section, we present some related work to our re-
search.



A. Author Identification of Micro-Messages

In the literature [2], a variety of methods have been de-
veloped and used for micro-message Author Identification
problems. Schwartz et al. [8] introduced a method known as
K-Signatures to identify authors of micro-messages. The K-
Signatures method captures the style of an author by collecting
the features only found in the writing samples of the author.
Also, another condition for collecting the feature is that a given
feature needs to be seen in k% of the author’s writing samples.
The K-Signature method was used by SVMs to classify an
author of a given text.

Rocha et al. [7] provides an overview of the Authorship
Identification methods used in social media. In addition, they
provided performance analysis of the feature sets of micro-
messages using two classifiers, namely, a Power Mean SVM
[20] and Random Forests. They suggest that character 4-grams
perform best.

Shrestha et al. [3] used a different approach for identifying
the authors of micro-messages. They used a sequence of
character n-grams as input. To date, this is the best performing
algorithm for Author Identification of micro-messages.

B. Neural Networks for Author Identification

CNNs for Author Identification have shown promising
results [3], [21]. Kim [21] proposed a CNN for sentence
classification. The CNN utilized convolutional filter sizes of 3,
4, and 5, a dropout rate, and max-over-time pooling (Collobert
et al. [11]). Kim’s approach [21] use of a different combination
of models such as: a) randomly initialized, b) static model, c)
dynamic model, d) Multi-Channel that combines the static and
dynamic models. The models, excluding the random model,
used pre-trained word2vec word embeddings [12].

Recurrent Neural Networks (RNNs) [22], have also been
used for Author Identification. Bagnall [22] used a RNN
that predicts the next character in the sequence based on the
previously seen characters. Different sets of probabilities of
the next character for each author were generated, then authors
were identified based on these probabilities. This was the best
performing method for the PAN 2015 multi-language author
identification competition.

C. Multi-Channel Convolutional Neural Networks

Multi-Channel CNNs [23] have been extensively studied
such as image classification, object detection, and speech
recognization [24]. The color channels (such as RGB) in
computer vision [23] or the wavelengths channels in speech
recognization [24] have proven successful as Multi-Channel
input for classification problems in their specific fields. Al-
though natural language inputs are normally in the form
of single-channel tokens or characters, the different sets of
extracted features are shown to capture different stylometric
features [4] [18] [15] [7]. To our knowledge, no previous work
has been done on the micro-message author identification task
using feature learning and model training from both word and
character n-grams embeddings channels.

III. MULTI-CHANNEL CONVOLUTIONAL NEURAL
NETWORKS

A. Model construction

In light of the above discussion, we devised a Multi-Channel
CNN architecture utilizing both the word embeddings and
character n-gram embeddings. The Multi-Channel convolu-
tional network architecture is shown in Figure 1 and the model
details are as follows.

1) Embedding Layer: Figure 1 shows two feature sets used
as individual input channels with their own embedding layers.
These feature embeddings are padded where necessary to have
mutual size. The dropout was applied to the embedding layer
to avoid over-fitting. The feature embeddings (inputs) were
then given to the convolutional layers with different window
sizes in parallel.

2) Convolutional Layer: The convolutional layers apply
filters to the input, feature embeddings in our case, and shifts
the filter until the end of the sequence. The window size of
the convolution operation corresponds to the size of the filter
that was applied to the input each time. Following the work of
[11], we used convolutional filters with window sizes of 3, 4,
and 5. We used the Scaled Exponential Linear Unit (SELU)
activation function [25] after each convolutional layer for self
normalizing properties.

The output of the convolutional filters are known as feature
maps. Since we used character embeddings and word embed-
dings as an individual input channel, each channel has a feature
map of size 1,500.

3) Pooling Layer: Convolutional layers are followed by
max-over-time pooling [11], which takes the feature with
maximum value in a given filter.

In this way, we make the network size the most helpful
features produced by convolutional layers. Thus the number
of selected values with max-over-time pooling is equal to the
number of filters in the architecture per feature embedding.

4) Merge Layer: The resulting features are merged into
a single feature map. In order to merge the feature maps
of the character and word embeddings, we experimented
with both concatenation (∪) and add (+) operations in merge
layer. The differences between the two operations are that
the concatenation operation concatenate the features into a
single feature vector, while the add operation use pairwise
add operation between feature vectors.

5) Fully Connected Layer with Softmax Output: After the
merge layer, the final step is to feed the feature maps into the
fully connected layer, followed by the softmax function for
the classification.

B. Hyper-parameter tuning

Hyper-parameters were selected based on grid search [26].
The embedding dimensions size of character and word used
was 400. We used a dropout layer with a drop rate of 25%.
For the convolutional layer, there were 500 filters per window
size, M = 500, which makes a total of 1,500 filters. Hence,
only one feature was selected per filter. We use a batch size



The

quick

brown

fox

jumps

over

the

lazy

dog

Word Embedding

Convolutional Layer Max-over-time Pooling Fully Connected LayerWriting Sample

Character N-Gram Embedding

M
M

Embedding Layer Merge Layer

+/∪

+/∪

with Softmax output

Fig. 1. Multi-Channel CNN architecture diagram. The writing sample is ”The quick brown fox jumps over the lazy dog”. The writing samples are tokenized
and fed to embedding layers. Word embedding and character bigram embedding layers are illustrated in the figure. The red, blue and yellow color indicate the
different window sizes for each channel. The embeddings then forwarded to convolutional layers with the different window sizes. There are M numbers of
filters for each window size. Max-over-time pooling is used in pooling layer, followed by merge layer, which combines the features by either Concatenation(∪)
or Add(+) operation, then feed into fully connected layer with softmax output.

of 64 for the experiment. The epoch limit was 100 with an
early stopping condition that stops after 20 epochs without
improvement. The learning rate updated during the training
by Adam optimizer. The initial learning rate was 1e− 4.

IV. EXPERIMENTS

In this section, we present our experiments. Initially, we
study the impacts of different features for embedding layers.
Then we study the performance of our proposed architecture
with increased difficulties, such as increasing the number of
authors or the number of writing samples. The experiments
were conducted in two different settings. We analyzed the re-
lation of two parameters with the performance of the proposed
architecture. The parameters were the number of authors and
the number of writing samples, one parameter was kept static
while the other was tested on a range of values. Lastly, we
conducted an experiment to compare different operations of
merging layers. The preprocessing method for the dataset was
used, which is similar to [8], in all four experiments. The
steps can be summarized as follows. We replaced the numbers,
username references, date, time, and website URLs with pre-
defined meta tags.

The statistics of the datasets used in experiments are shown
in Table I. The first column shows the type and size of the
dataset. The number of authors and the number of writing
samples per author was denoted as a and w, respectively.

Then, the mean (µ) and standard deviation (σ) of the number
of characters, words, and sentences for writing samples are
shown. The last column shows that the dictionary size which
is the number of unique words in the dataset. The average
number of characters used was close to half the size of the
character limit of the writing samples. The mean and standard
deviation of the characters, words, and sentences are consistent
for all configurations. Conversely, the number of unique words
increases with the number of total writing samples.

TABLE I
DATASET STATISTICS

a
Characters Words Sentences

Dict
µ σ µ σ µ σ

100a 71.57 33.81 14.10 6.50 1.69 0.90 47493
200a 73.15 34.04 14.29 6.49 1.71 0.96 81735
500a 73.79 34.11 14.42 6.55 1.69 0.95 161742
1000a 73.28 33.84 14.30 6.49 1.71 0.96 269774

50w 73.26 34.22 14.17 6.45 1.66 0.94 10858
100w 73.04 34.20 14.15 6.45 1.65 0.92 18094
200w 73.04 34.16 14.15 6.44 1.65 0.93 29942
500w 72.87 34.11 14.12 6.43 1.65 0.92 56975



Our four experimental settings are as follows.

A. Experiment I: Varying Character N-Gram Embeddings

To assess the effectiveness of different features for the
embedding layer, we compare the n-gram embedding per-
formance and the number of epochs on the same dataset
set. In this experiment, the individual performance of n-gram
embeddings with different n values was evaluated. We tested 1,
2, 3, 4, and 5 for n values based on their usage in the literature
[7], [8]. For this purpose, we created a development dataset,
also known as validation set, with 10 authors and 200 writing
samples per author. The authors in the development set are not
used in any other experiment. We collect the performance of
the CNNs using 100 and 1,000 epochs. Since the number of
unique n-grams increases with higher values of n, we increased
the number of epochs 1,000 to avoid under-fitting.

B. Experiment II: Varying Number of Authors

We explore how our proposed architecture performs with
an increasing number of authors. We performed a set of
performance evaluations with a different number of authors
while keeping the number of writing samples static. The
number of writing samples per author (w) was 200. The
number of authors (a) was used in experiments was 100, 200,
500, and 1,000. In this experiment, we used the same sampling
used in [8]. As expected, the reproduced results in this paper
were similar to the reported results in [3] and [8]. We used
10-fold cross-validation on the experiments for each author
group. Hence, we evaluated 40 train-test splits in total.

C. Experiment III: Varying Number of Writing Samples

In this experiment, we investigate the impact of a differ-
ent number of writing samples for author identification. We
performed a set of performance evaluations with a varying
number of writing samples per author where the number of
authors was 50. The number of writing samples per author
used in experiments was 50, 100, 200, and 500. We sampled
10 different disjoint sets of groups for each writing sample
size1. We used 10-fold cross-validation on the experiments
for each author group. Hence, we evaluated 400 experiments
in total.

D. Experiment IV: Impacts of feature map merging methods

In our final experiment, we study the impacts of different
methods for merging layers. There are two popular ways to
merge the feature maps, namely add and concatenate opera-
tion. We explored the impacts of the two methods under the
same experimental setup for both varying number of authors
and the varying number of writing samples where (∪) stand
for concatenation operation and (+) stand for add operations.
The rest of the experimental setup was the same as described
above.

1We contacted the authors of the previous work but unfortunately, they told
us that they do not have the sampling anymore.

V. RESULTS

We compare our proposed methods against the following
baselines. The information about the algorithms that were used
in the experiments can be found in the following list:
• K-Signatures [8]: Uses the features that include character

and word N-grams. The features used by a single author
at least K% of the documents are used. Also, a method
called Flexible Patterns was utilized. Patterns in this
method can match partially and get a score based on the
closeness. Combination of K-Signatures and Flexible Pat-
terns techniques shown better results in the paper. Hence,
reported results are a combination of the techniques.

• LSTMChar2: Long Term Short Term Memory (LSTM)
networks are widely used and known for the sequence to
sequence tasks. There were also applications for Author
Identification. We used character bigrams as an input to
the network based on our preliminary findings on our
development set.

• CNNCharN [3]: All character N-grams are randomly
initialized and then updated in the training. The other
parameters of the networks like filter weights are also up-
dated with Backpropagation. In this paper, we implement
both CNNChar1 and CNNChar2 methods to compare with
our proposed method.

• CNNW2V Static [21]: All words are initialized with a pre-
trained word vector from Word2Vec. Only weights are
updated during the training, word vectors are static in
the training phase.

• CNNW2V [21]: Pre-trained vectors in CNNW2V Static are
updated during the training. The pre-trained embeddings
are trained on the Twitter dataset.

• CNNFastText: All words are initialized with a pre-trained
word vector from FastText. The pre-trained embeddings
are trained on the Twitter dataset.

We implement an ablation study of our proposed architec-
ture where different word embedding and character n-gram
embedding methods are treated as individual input channels.
The embeddings in each channel are updated during the
training phase. The individual channels are merged with Con-
catenate (∪) or Add (+) layer. The implementation information
and detailed explanation of these settings are listed as follows:
• CNNW2V (+/∪) Char1: The word embeddings and char-

acter unigram embeddings are treated as an individual
input channel. All words are initialized with a pre-trained
word vector from Word2Vec.

• CNNW2V (+/∪) Char2: The word embeddings and char-
acter bigram embeddings are treated as an individual
input channel. All words are initialized with a pre-trained
word vector from Word2Vec.

• CNNFastText (+/∪) Char1: The word embeddings and
character unigram embeddings are treated as an individual
input channel. All words are initialized with a pre-trained
word vector from FastText.

• CNNFastText (+/∪) Char2: The word embeddings and
character bigram embeddings are treated as an individual



input channel. All words are initialized with a pre-trained
word vector from FastText.

A. Results of Experiment I: Varying Character N-Gram Em-
beddings

Figure 2 shows the performances of character n-grams on
the development set. Figure 2a and 2b were trained for 100 and
1,000 epochs, respectively. The figures illustrate the accuracy
of 10-fold cross-over, the mean values are shown with solid
black lines, and the individual precision values of each author
are shown as dots with circles.

We performed ANOVA and Student-t test with p=0.05 on
performances of character n-gram embeddings to compare
them. Figure 2a the mean accuracies of 1-5 grams were
66.15%, 66.00%, 57.25%, 52.50%, and 49.65%, respectively.
Based on the statistical test we performed, we observed that
there was no significant difference between 1-gram(unigram)
and 2-gram(bigram) embeddings. The performance of the n-
grams when they are trained for 100 epochs as follows,
1−gram = 2−gram > 3−gram > 4−gram = 5−gram.
The mean accuracies of 1-5 grams in Figure 2b were 78.45%,
75.70%, 72.40%, 65.35%, and 55.45%, respectively. Based
on the statistical test we performed the performance of the
n-grams when they are trained for 1,000 epochs as follows,
1−gram > 2−gram > 3−gram > 4−gram > 5−gram.
The performance gap becomes clear between character n-
grams after increasing the number of epochs. Due to lack of
space, Figure 2 reports only on character n-grams, but the
same trend applies for word n-gram embeddings.

B. Results of Experiment II: Varying Number of Authors

Table II shows the results of approaches discussed in Section
IV with varying number of authors. In Table II, the first column
list the algorithm used in the experiment, where the baseline
methods are listed above the double lines and our proposed
methods are listed below the double lines. The rest of the
columns list the accuracies of the algorithms with 100, 200,
500, and 1000 authors, respectively. The number in red marks
the highest accuracy in each column.

As expected the accuracies decrease as the number of
authors increases for all the methods listed. Among the seven
baseline methods, CNNFastText performed surprisingly better
than others without needing character n-grams. Our tests
confirm that using character n-grams perform better than the
compared algorithms. CNNW2V which does not use character
n-gram performed worse than the CNNChar2 on all of the
cases. We were unable to reproduce the behavior of CNNChar1

and CNNChar2 reported on [3]. The reported results show that
Character Unigrams perform better on 100 authors compared
to Character Bigrams with a small margin. In our tests,
Character Bigrams performed better on all of the tests.

Comparing with CNNW2V , the Multi-Channel architecture
methods perform better with the adding of character N-
grams channel. The best performer in terms of the word
embeddings pre-trained with Word2Vec is CNNW2V + Char2,
which performed better than the state-of-the-art result. The

accuracies of the CNNW2V + Char2 algorithms with 100, 200,
500, and 1000 authors are 52.67%, 50.53%, 43.79%, 38.29%,
respectively.

Similarly with Word2Vec, CNNFastText + Char2 was the
best performer for all authors sets in Experiment II with
FastText embeddings and the overall. The accuracies of the
CNNFastText + Char2 algorithms with 100, 200, 500, and
1000 authors are 55.20%, 53.14%, 46.90%, 41.28%, respec-
tively. On average, CNNFastText + Char2 performed 10% bet-
ter than the state-of-the-art results with 100, 200, 500, and
1000 authors.

TABLE II
PERFORMANCES OF THE ALGORITHMS WITH VARYING NUMBER OF

AUTHORS

Algorithms
Authors

100 200 500 1000

CNNChar1 [3] 49.24% 47.68% 41.37% 35.60%
CNNChar2 [3] 49.96% 48.84% 42.92% 37.55%
K-Signatures [8] 42.50% 41.10% 35.50% 30.30%
LSTMChar2 33.80% 33.50% 29.80% 24.80%
CNNW2V Static 24.10% 20.80% 16.10% 12.70%
CNNW2V 47.21% 45.52% 39.85% 34.73%
CNNFastText 51.83% 50.25% 44.18% 38.74%

CNNW2V ∪ Char1 50.42% 48.12% 42.44% 37.48%
CNNW2V + Char1 52.44% 49.74% 43.53% 37.71%
CNNW2V ∪ Char2 48.95% 47.06% 41.76% 36.57%
CNNW2V + Char2 52.67% 50.53% 43.79% 38.29%
CNNFastText ∪ Char1 52.62% 51.36% 46.17% 40.61%
CNNFastText + Char1 52.55% 50.89% 45.42% 40.25%
CNNFastText ∪ Char2 54.23% 52.23% 46.62% 40.84%
CNNFastText + Char2 55.20% 53.14% 46.90% 41.28%

C. Results of Experiment III: Varying Number of Writing
Samples

Table III shows the results of approaches discussed in
Section IV with varying number of writing samples per author.
In Table III, the first column list the algorithm used in the
experiment, where the baseline methods are listed above the
double lines and our proposed methods are listed below the
double lines. The rest of the columns list the accuracies of
the algorithms with 50, 100, 200, and 500 writing samples
per author, respectively. The number in red marks the highest
accuracy in each column.

Obviously, the accuracies increase as the number of writing
samples increases for all the methods listed. Among the base-
line methods, CNNFastText performed surprisingly better than
everything without needing character n-grams. The reported
results in [3] show that Character Bigrams perform better
only on 500 writing samples compared to Character Unigrams.
However, in our tests, Character Bigrams performed better
on 50 and 100 writing samples which suggest that character
unigrams perform better with larger writing samples.



(a) Trained for 100 epochs (b) Trained for 1,000 epochs

Fig. 2. The box plot that illustrates the performances of character n-grams on the development set. Precisions are shown in the two panels. In each panel,
five boxplots display the results of 1-5 gram methods, respectively. In each box, the square box indicates the interquartile range from 25% to 75%; the black
line inside the box represent the median value. Individual precision values of authors from each method are shown as small dots with circles in the same
color code as boxplot. Panel(a) trained for 100 epochs and panel(b) trained for 1,000 epochs.

Our tests confirm that using character n-grams perform
better than the compared algorithms. CNNW2V which does
not use character n-gram performed worse than the CNNChar2

on all of the cases. After adding character N-grams channel
it performed better than the CNNW2V . The best performer
in terms of the word embeddings pre-trained with Word2Vec
is CNNW2V + Char2, which performed better than the state-
of-the-art result. The accuracies of the CNNW2V + Char2

algorithms with 50, 100, 200, and 500 writing samples are
54.91%, 61.52%, 67.11%, 72.88%, respectively. From Table
III we can see that CNNW2V + Char2 performs best among all
methods with 50 writing samples.

Furthermore, we observed the same behavior with character
n-grams which improved the accuracy in every combination.
Similarly with Word2Vec, CNNFastText + Char2 was the best
performer in all experiments with FastText embeddings. On
average, CNNFastText + Char2 performed 5% better than the
state-of-the-art results with 50, 100, 200, and 500 writing sam-
ples per author. The accuracies of the CNNFastText + Char2

algorithms with 50, 100, 200, and 500 writing samples are
54.36%, 62.17%, 68.34%, 74.50%, respectively. The improve-
ment in accuracy is less than the improvements observed in
the experiment with varying number of authors.

D. Result of Experiment IV: Impacts of feature map merging
methods

Table II shows the comparison of different merging meth-
ods with varying the number of authors. The add opera-
tion performs better in all experiments except one (Table
II, FastText ∪ Char1) with small margins. The accuracy of
FastText ∪ Char1) algorithm with 100, 200, 500, and 1000
authors are 52.62%, 51.36%, 46.17%, and 40.61%, whereas
the accuracy of FastText + Char1) algorithm with 100, 200,
500, and 1000 authors are 52.55%, 50.89%, 45.42%, and
40.25%.

Similarly, Table III shows the comparison of different
merging methods with varying the number of writing sam-
ples. The add operation performs better in all experiments
with varying the number of writing samples except one
(Table III, FastText ∪ Char1) with small margins. The accuracy
of FastText ∪ Char1) algorithm with 500 writing samples is
72.96%, whereas the accuracy of FastText + Char1) algorithm
with 500 writing samples is 72.89%.

From both Table II and Table III, we can see that the best
performer in each experiments all uses add operation in merge
layer. In a general case for authorship attribution on micro-
messages, the recommended merge operation would be add
operation instead of concatenation for our proposed Multi-
Channel CNN architecture based on the previous experimental
results.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a Multi-Channel CNN approach
that can be applied to identify the authors of micro-messages.
We compared the performance of state-of-the-art CNNs that
uses character n-gram embeddings with the proposed CNNs
that use Multi-Channel architecture. The experiments that we
carry out show that using Multi-Channel CNNs with pre-
trained word embeddings performs better compared to the
CNNs that use character n-gram embeddings on the Twitter
dataset. Also, we showed that using the Add operation over
the Concatenation operation in the merge layer increases
the performance of the system on all of the cases but one
(CNNFastText ∪ Char1). It would be interesting to see if the
performance keeps increasing when more pre-trained features
are used. Since as the time of the writing only word embed-
dings are maturely pre-trained, we left the exploration of this
to future work.



TABLE III
PERFORMANCES OF THE ALGORITHMS WITH VARYING NUMBER OF

WRITING SAMPLES

Algorithms
Writing Samples

50 100 200 500

CNNChar1 [3] 51.40% 58.20% 64.07% 70.30%
CNNChar2 [3] 51.56% 58.25% 63.59% 69.80%
CNNW2V Static 36.60% 41.70% 46.00% 50.90%
CNNW2V 49.14% 56.68% 62.96% 69.70%
CNNFastText 51.46% 59.14% 65.61% 72.46%

CNNW2V ∪ Char1 52.86% 60.10% 65.85% 71.89%
CNNW2V + Char1 53.71% 60.55% 66.12% 72.30%
CNNW2V ∪ Char2 52.68% 60.12% 65.87% 71.86%
CNNW2V + Char2 54.91% 61.52% 67.11% 72.88%
CNNFastText ∪ Char1 51.94% 59.83% 66.14% 72.96%
CNNFastText + Char1 53.28% 60.56% 66.64% 72.89%
CNNFastText ∪ Char2 52.04% 60.58% 67.28% 73.87%
CNNFastText + Char2 54.36% 62.17% 68.34% 74.50%

REFERENCES

[1] E. Stamatatos, “A survey of modern authorship attribution methods,”
Journal of the American Society for information Science and Technology,
vol. 60, no. 3, pp. 538–556, 2009.

[2] T. Neal, K. Sundararajan, A. Fatima, Y. Yan, Y. Xiang, and D. Woodard,
“Surveying stylometry techniques and applications,” ACM Computing
Surveys (CSUR), vol. 50, no. 6, p. 86, 2018.

[3] P. Shrestha, S. Sierra, F. González, M. Montes, P. Rosso,
and T. Solorio, “Convolutional neural networks for authorship
attribution of short texts,” in Proceedings of the 15th Conference
of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers. Valencia, Spain: Association
for Computational Linguistics, Apr. 2017, pp. 669–674. [Online].
Available: https://www.aclweb.org/anthology/E17-2106

[4] V. Kešelj, F. Peng, N. Cercone, and C. Thomas, “N-gram-based author
profiles for authorship attribution,” in Proceedings of the conference
pacific association for computational linguistics, PACLING, vol. 3. sn,
2003, pp. 255–264.

[5] M. Koppel, J. Schler, and S. Argamon, “Authorship attribution in the
wild,” Lang. Resour. Eval., vol. 45, no. 1, pp. 83–94, Mar. 2011.
[Online]. Available: http://dx.doi.org/10.1007/s10579-009-9111-2

[6] W. J. Teahan and D. J. Harper, “Using compression-based language
models for text categorization,” in Language modeling for information
retrieval. Springer, 2003, pp. 141–165.

[7] A. Rocha, W. J. Scheirer, C. W. Forstall, T. Cavalcante, A. Theophilo,
B. Shen, A. R. Carvalho, and E. Stamatatos, “Authorship attribution for
social media forensics,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 1, pp. 5–33, 2016.

[8] R. Schwartz, O. Tsur, A. Rappoport, and M. Koppel, “Authorship
attribution of micro-messages,” in Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, 2013, pp. 1880–
1891.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[11] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of machine learning research, vol. 12, no. Aug, pp. 2493–2537, 2011.

[12] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[13] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks
for efficient text classification,” in Proceedings of the 15th Conference
of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers. Valencia, Spain: Association
for Computational Linguistics, Apr. 2017, pp. 427–431. [Online].
Available: https://www.aclweb.org/anthology/E17-2068

[14] G. Baron, “Comparison of cross-validation and test sets approaches to
evaluation of classifiers in authorship attribution domain,” in Interna-
tional Symposium on Computer and Information Sciences. Springer,
2016, pp. 81–89.

[15] J. Diederich, J. Kindermann, E. Leopold, and G. Paass, “Authorship
attribution with support vector machines,” Applied intelligence, vol. 19,
no. 1-2, pp. 109–123, 2003.

[16] M. Jockers and D. M. Witten, “A comparative study of machine learning
methods for authorship attribution,” LLC, vol. 25, pp. 215–223, 05 2010.

[17] J. Gaston, M. Narayanan, G. Dozier, D. L. Cothran, C. Arms-Chavez,
M. Rossi, M. C. King, and J. Xu, “Authorship attribution vs. adversarial
authorship from a liwc and sentiment analysis perspective,” in 2018
IEEE Symposium Series on Computational Intelligence (SSCI), Nov
2018, pp. 920–927.

[18] U. Sapkota, S. Bethard, M. Montes, and T. Solorio, “Not all character
n-grams are created equal: A study in authorship attribution,” in Pro-
ceedings of the 2015 conference of the North American chapter of the
association for computational linguistics: Human language technolo-
gies, 2015, pp. 93–102.

[19] A. Narayanan, H. Paskov, N. Z. Gong, J. Bethencourt, E. Stefanov,
E. C. R. Shin, and D. Song, “On the feasibility of internet-scale author
identification,” in 2012 IEEE Symposium on Security and Privacy, May
2012, pp. 300–314.

[20] J. Wu, “Power mean svm for large scale visual classification,” in 2012
IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
2012, pp. 2344–2351.

[21] Y. Kim, “Convolutional neural networks for sentence classification,”
in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: Association
for Computational Linguistics, Oct. 2014, pp. 1746–1751. [Online].
Available: https://www.aclweb.org/anthology/D14-1181

[22] D. Bagnall, “Author identification using multi-headed recurrent neural
networks,” arXiv preprint arXiv:1506.04891, 2015.

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[24] Y. Hoshen, R. J. Weiss, and K. W. Wilson, “Speech acoustic modeling
from raw multichannel waveforms,” in 2015 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp.
4624–4628.

[25] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” in Advances in Neural Information
Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.
Curran Associates, Inc., 2017, pp. 971–980. [Online]. Available:
http://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf

[26] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of machine learning research, vol. 13, no. Feb, pp.
281–305, 2012.


