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Abstract—In this paper, we propose a non-traditional Genetic
& Evolutionary Feature Selection (GEFeS) method for Author
Identification. This method evolves a distributed feature vector
for each author and it’s therefore distributed. We refer to this new
approach as a distributed neural evolutionary hybrid (DiNEH).
We compare the performance of DiNEH with a number of
well-known Authorship Attribution Techniques (AATs) from the
literature. DiNEH was able to outperform all of the AATs on
one dataset and was second on the second dataset by a narrow
margin.
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I. INTRODUCTION

Over the years, the field of Evolutionary Computation
(EC) has seen development in a wide variety of successful
distributed evolutionary computations (DECs). To date, DECs
can be classified as: domain-based [1]–[3], function-based
[4], and/or variable-based [2]. In domain-based DECs, the
overall population of candidate solutions, P , is distributed
across k processors where each processor receives P/k can-
didate solutions (individuals). Function-based DECs distribute
the functions of evolutionary operators and processes (e.g.,
Crossover, Function Evaluation, Selection, etc.) across k pro-
cessors while variable-based DECs distribute the chromosome
across k processors. In this paper, we present a distributed
neuro-evolutionary hybrid (DiNEH) approach that combines
domain-based, function-based, and variable-based DEC. We
compared the DiNEH with other Authorship Identification
methods in different datasets. Our results show that DiNEH is
an effective method for Author Identification [5].

The remainder of the paper is as follows. In Section II, we
introduced some related work, in Section III, we introduce
DiNEH, in Section IV, we describe the datasets used in our
experiments. In Section V, we describe our experiments. In
Section VI, we provide our results and in Section VII, we
present our conclusions and future work.

II. RELATED WORK

In the literature, a variety of methods have been developed
and used for Author Identification [5]. Luyckx et al. [6] used
memory-based learning and discovered that increasing the
number of authors within a dataset has an adverse effect on
Author Identification accuracy while increasing the number
of writing instances per author as well as the size of each
writing instance increases the identification rate. Baron [7]
compared the following methods: Decision Trees (PART and
C4.5), Random Forest, k-Nearest Neighbors, Multilayer Per-
ceptrons, Radial Basis Function Networks, and Naive Bayesian
Classifiers for identifying authors. Their research suggests that
cross-validation can result in over-estimation for Authorship
Attribution.

In [8]–[12], the authors used similarity-based methods that
utilized the concept of relative and cross-entropy. In [13]–
[15], Support Vector Machines were used. Jockers and M.
Witten [14] introduced the concept of introduced Nearest
Shrunken Centroids (NSC) and Regularized Discriminant
Analysis (RDA).

A wide variety of features have been used for increasing the
effectiveness of Author Identification [8], [13], [16]. Some of
these include n-grams [8], [17], bag-of-words [13], stylometry
[18], to name just a few. Khomytska and Teslyuk [16] intro-
duced phonological level features. A more complete overview
of Author Identification analysis can be found in [5].

Convolutional Neural Networks (CNNs) for Authorship
Attribution tasks are showing promising results [19], [20].
Kim [19] proposed a CNN architecture, utilized multiple
convolutional filter sizes (3, 4, and 5), dropout rate, and max-
over-time pooling (Collobert et al. [21]), for sentence classi-
fication tasks. The proposed approach has different variations
with a randomly initialized model, static model, non-static
model, and multichannel model that combines static and non-
static models. The models, except the random model, were
performing similarly. The performances of the three models
were competitive against the other methods used. Shrestha et
al. [20] used a different approach to identify the writers of the
short texts. The authors used a sequence of character n-grams
for the input and analyzed sensitive n-grams that contribute978-1-7281-6861-6/20/$31.00 ©2020 IEEE



to classification for an author using Salient sections [22]. The
proposed approach performed better than the state-of-the-art
approach by Schwartz et al. [23].

III. AUTHOR IDENTIFICATION VIA DINEH

In this section, we introduce GEFeS (Genetic & Evolution-
ary Feature Selection) which evolves a single feature mask to
reduce the number of the features needed for Author Identifi-
cation. GEFeS also increases the identification accuracy. After
GEFeS is introduced we will introduce DiNEH which evolves
a feature mask for every author within a dataset. DiNEH not
only has superior performance but is also scalable on datasets
with a large number of authors.

A. Single GEFeS Method

The GEFeS is based on the steady-state genetic algorithm
[24] that evolves a population of 20 candidate feature masks.
The initial population of candidate feature masks is generated
using a binary standard uniform distribution function. Hence,
each feature mask generated in the initial population is antic-
ipated to utilize half of the total number of features. In each
generation, two parents are selected via binary tournament
selection, and one offspring feature mask is created using
a uniform crossover with a mutation rate of 5%. The worst
feature mask in the population was replaced with the new
offspring feature mask.

A Linear Support Vector Machine (LSVM) is used for
Author Identification. We use LSVMs because of their ability
to cope with a large number of inputs and their applications
for Authorship Identification in the literature [13]. The Scikit-
learn library was used for the LSVM with the LinearSVC
module. GEFeS calculates the accuracy of the classification
using leave-one-out cross-validation.

In order to calculate the accuracy of a candidate feature
mask, each writing sample is classified one-by-one. Each
writing sample of the dataset classified by the LSVM results
in a decision vector that has a number associated with each
author in the dataset. The author with the highest score in the
decision vector is selected as the author of that writing sample.

Three different feature sets used were Character Unigrams,
Stylometry, and Bag-of-Words. The features that were used
for Stylometry were similar to [18] and shown in Table I.

B. DiNEH

Scalability is a big concern for Authorship Identification
tasks as examined in [25]. We propose a distributed method
for feature selection. DiNEH consists of a set of author cells
(one author cell for each author). Figure 1 provides a diagram
of an author cell. In Figure 1, one can see that an author cell
is composed of six components. The first two components,
self and non-self, represent the dataset as a whole. However,
for an author cell, the self-set contains only a writing sample
for the associated author while the non-self set represents the
writing samples of all the other authors. Therefore, an author
cell represents a two-class identification problem. Each author
cell has an LSVM that is trained using leave-one-out. Finally,

TABLE I
STYLOMETRY FEATURE SET

Category Description Count

Length number of words/characters in post 2
Vocabulary
richness

Yule’s K and frequency of hapax legomena, dis
legomena, etc.

12

Word shape frequency of words with different combination of
upper- and lower-case letters.

5

Word length frequency of words that have 1-20 characters. 20
Letters frequency of a to z, ignoring case 26
Digits frequency of 0 to 9 10
Punctuation frequency of .?!,;:()”-’ 11
Special
Characters

frequency of other special characters
“˜@#$ˆ&* +=[]{}\|/<>

22

Function
words

frequency of words like ’a’, ’about’, ’after’ etc. 320

Total 428

Note: The syntactic category pairs were omitted and different func-
tion words were used from [18].

each author cell has a GEFeS which evolves a population of
a candidate feature mask.

Author Cell

Training,
Validation

Decision
Function

LinearSVC
Self

Non
Self

Validation
Score

Leave-One-Out
Cross-Validation

Feature
Mask

Feature
Mask

Genetic Algorithm

Fig. 1. Diagram of the feature selection process in author cells

DiNEH uses the author cell GEFeSs for evaluating the
feature masks within the author cells. The fitness function for
the GEFeS used in each author cell is as follows:
|self |∑
i=1

f(LSVM(selfi))→ f(x) =

{
x > 0 |self |
x ≤ 0 x+ 1

(1)

The classification of an author cell LSVM is performed in
the same way with the single GEFeS approach. Each author
cell classifies a writing sample using its feature mask. The
resulting decision vector of the classification was a score for
a given author cell.

DiNEH uses the same Character Unigrams and Stylometry
feature sets introduced in as the single GEFeS mentioned



earlier. As for the Bag-of-Words feature set, DiNEH utilizes
author-based Bag-of-Words generated from each authors’ writ-
ing sample independently. Thus, each author cell is trained
with the Bag-of-Words associated with their writing samples
only.

IV. DATASETS

The datasets used in this paper are the subsets of the CASIS-
1000 [26], [27] and Reuters 50 50 [28] dataset. The CASIS-
1000 dataset composed of blog entries from 1,000 authors.
There are four writing samples for each of the 1,000 authors.
Hence, there are a total of 4,000 writing samples in this
dataset. Each subset, namely CASIS-N, is the first n authors of
the CASIS-1000 dataset. The Reuters 50 50 (C50) dataset is
widely used for Authorship Attribution [29]. The C50 dataset
composed of news articles of 50 authors. The dataset has 50
writing samples for each training and test set. Hence, there
is a total of 2,500 writing samples for the training set and
2,500 writing samples for the test set. We used this dataset
to compare the performance of DiNEH with other proposed
approaches in [8]–[12].

Feature sizes for subsets of CASIS-1000 and C50 are shown
in Table II for both author-based and global Bag-of-Words. It
is clear that the difference between a single feature set and
an average author feature set increases when the dataset gets
larger.

TABLE II
BAG-OF-WORDS FEATURE SIZES

Dataset Single
Feature Set1

Author Feature Sets2

Average Maximum

CASIS-25 6,082 488.20 1,147
CASIS-50 9,984 523.16 1,403
CASIS-100 14,351 491.00 1,849
CASIS-1000 52,919 488.81 2,084
C50 35,202 2,177.09 4,539

The raw features collected from the writing samples are
first preprocessed before the classification. The scikit-learn
python library [30] is used for the preprocessing of the
feature vectors produced by DiNEH. Term Frequency-Inverse
Document Frequency (tf-idf) transformer and StandardScaler
are first used to modify each feature vector, and then those
feature vectors were normalized. The tf-idf transformer scales
down the impact of tokens that occur very frequently in a given
corpus. In order to standardize each feature, the StandardScaler
subtracts the mean and then divides it by the variance per
feature. Each feature vector is scaled into a unit vector using
the normalization. This preprocessing process is utilized before
using GEFeSs.

1Number of words used in the dataset.
2Number of words used by an author in the dataset.

V. EXPERIMENTS

For Authorship Attribution, we first extracted the features
described below from a set of writing samples. Then, we used
preprocessing techniques that are explained in the preprocess-
ing section. We conducted feature selection experiments with
the Single GEFeS and DiNEH approaches on subsets CASIS-
1000 dataset. Then, we compared DiNEH approach with the
authorship attribution systems proposed in [8]–[12].

In Experiment I, the baselines for CASIS-25, 50, 100, and
1000 were computed using an LSVM without GEFeS for the
Character Unigram, Stylometry, and Bag-of-Words features.
In Experiments II, III, and IV, the performances of Single
GEFeS and DiNEH were compared for CASIS-25, 50, and
100 datasets using Character Unigram and Stylometry3.

In Experiment V, the performances of the four well-known
author identification systems were compared with DiNEH
methods on CASIS-25, 50, 100, and 1000 datasets. In Ex-
periment VI, the performances of the four well-known author
identification systems and six different CNNs were compared
with DiNEH methods on the C50 dataset. The following CNN
model variants were used for the comparison with DiNEH in
Experiment VI.
• CNNword rand [19]: All words are randomly initialized

and then updated in the training.

• CNNword static [19]: All words are initialized with a
pre-trained word vector from word2vec. They are not
updated during the training.

• CNNword non−static [19]: Similar to word static but
pre-trained vectors are updated during the training.

• CNNword multichannel [19]: This model is where
word static and word non static are treated as
an individual channel. Only the word vectors in
word non static are updated during the training.

• CNNchar 1 [20]: Similar to word rand but character
unigrams are used as input instead of words.

• CNNchar 2 [20]: Similar to word rand but character
bigrams are used as input instead of words.

VI. RESULTS

The GEFeS approach was created to evaluate the initial
population. In addition, 4,980 offspring feature masks were
created, one per generation, for a total of 5,000 function
evaluations. Let n be the number of writing samples. Each
function evaluation calculated the fitness using leave-one-out
cross-validation, and each sample was needed to be classified.
Therefore, each classifier was trained with all writing samples
excluding the test writing sample which was (n − 1). The

3The reason why Bag-of-Words was not used in Experiment II, III, and IV
due to inability of Single GEFeS to scale as shown in Table II



computational effort for the Single GEFeS function evaluation
(ωSingleGEFeS) is as follows, where n represents the number
of writing samples:

ωSingleGEFeS = n2 − n (2)

The computational effort for DiNEH function evaluation
(ωDiNEH ) was as follows, where n represents the number
of writing samples and where m represents the number of
writing instances per author:

ωDiNEH =
n

m
×m× (n− 1) = n2 − n (3)

For the CASIS-1000 dataset n = 4000 and m = 4. For the
C50 dataset n = 2500 and m = 50.

The computational efforts required for single-function eval-
uation in DiNEH and the Single GEFeS approach (Equations
(2) and (3)) were equal. For a fair comparison, the same
number of function evaluations were used for DiNEH and the
Single GEFeS approach.

A. Experiment I

Table III shows the baseline results of the LSVMs without
feature selection. The first column lists the dataset used for
the Experiment I. The second, third and fourth columns list
the baseline accuracies of the LSVMs using Character Uni-
grams, Stylometry, and Bag-of-Words respectively. In Table
III, one can see that as the number of authors increases the
accuracy decreases for all LSVMs. An unexpected result is that
the Character Unigram LSVM outperformed the Stylometry
LSVM for all four datasets. The Bag-of-Words LSVMs had
the best overall performance on all four datasets.

TABLE III
PERFORMANCE BASELINE

Dataset Unigram Stylometry Bag-of-Words

CASIS-25 65.00% 58.00% 96.00%
CASIS-50 51.00% 44.00% 90.00%
CASIS-100 46.00% 34.25% 84.50%
CASIS-1000 24.53% 19.65% 47.57%

B. Experiment II

Table IV shows the results of the LSVMs with Single
GEFeS and DiNEH on CASIS-25 dataset 30 times with
5,000 function evaluations for each run. In Table IV, the
first column lists the algorithm and feature set pair used
in the experiment. The second column lists the equivalent
classes of the methods that were determined by using ANOVA
and Student’s t-test. The third and fourth columns list the
best and average accuracies, respectively. The fifth and sixth
columns list the lowest and the average number of features
used in the feature mask, respectively. One can see that DiNEH
outperforms Single GEFeS in terms of an equivalence class,
the best accuracy, average accuracy. DiNEHuni outperforms
Single GEFeSuni in terms of the fewest number of features and
the average number of features; however, the same conclusion

was not observed for DiNEHsty and Single GEFeSsty. In this
case, Single GEFeSsty outperforms DiNEHsty in terms of the
fewest number of features used while DiNEHsty outperforms
Single GEFeSsty in terms of the average number of features
used. In Table IV, DiNEHsty has the best overall performance
in terms of accuracy.

TABLE IV
CASIS-25 RESULTS

Algorithm EQ
Class

Accuracy Number of Features

Best Average Lowest Average

Single GEFeSuni III 83.00% 80.70% 49.00 55.17
Single GEFeSsty III 83.00% 81.20% 205.00 219.37
DiNEHuni II 93.00% 92.10% 47.40 48.88
DiNEHsty I 99.00% 98.10% 211.64 213.49

C. Experiment III

Table V shows the results of the LSVMs with Single GEFeS
and DiNEH on CASIS-50 dataset 30 times with 5000 function
evaluations for each run. As similar to Experiment II, for Table
V, the first column lists the algorithm and feature set pair
used in the experiment. The second column lists the equivalent
classes of the methods that were determined by using ANOVA
and Student’s t-test. The third and fourth columns list the
best and average accuracies. The fifth and sixth columns list
the lowest and the average number of features used in the
feature mask. In Table V, one can see that DiNEH outper-
forms Single GEFeS in all performance measures (equivalence
class, accuracy, number of features). The Single GEFeSuni

outperformed Single GEFeSsty in terms of equivalence class
and accuracy while DiNEHsty outperformed DiNEHuni in
terms of equivalence class and accuracy. As in Experiment
II, DiNEHsty outperformed the others in terms of equivalence
class and accuracy.

TABLE V
CASIS-50 RESULTS

Algorithm EQ
Class

Accuracy Number of Features

Best Average Lowest Average

Single GEFeSuni III 66.00% 64.80% 53.00 59.93
Single GEFeSsty IV 62.00% 60.55% 214.00 230.93
DiNEHuni II 82.00% 80.90% 47.14 48.47
DiNEHsty I 95.50% 94.60% 210.38 213.53

D. Experiment IV

Table VI shows the results of the LSVMs with Single
GEFeS and DiNEH on CASIS-100 dataset with 30 random
runs with 5,000 function evaluations for each run. In Table
VI, the first column lists the algorithm and feature set pair
used in the experiment. The second column lists the equivalent
classes of the methods that were determined by using ANOVA



and Student’s t-test. The third and fourth columns list the
best and average accuracies, respectively. The fifth and sixth
columns list the lowest and the average number of features
used in the feature mask, respectively. In Table VI, as in
Experiment III, DiNEH outperformed Single GEFeS in terms
of an equivalence class, accuracy, and the number of features
used. As we have noticed earlier, Single GEFeSuni once
again outperformed Single GEFeSsty in terms of equivalence
class and accuracy while DiNEHsty outperforms DiNEHuni

in terms of equivalence class and accuracy. DiNEHsty had the
best overall performance. Figure 2 provides the plot of the
average accuracy for all 4 methods on the CASIS-25, 50, and
100 datasets.

TABLE VI
CASIS-100 RESULTS

Algorithm EQ
Class

Accuracy Number of Features

Best Average Lowest Average

Single GEFeSuni III 54.00% 53.34% 63.00 69.41
Single GEFeSsty IV 47.50% 46.04% 214.00 229.12
DiNEHuni II 78.00% 77.45% 48.34 48.81
DiNEHsty I 90.75% 87.85% 212.44 213.56

Fig. 2. Average accuracy of the Single GEFeS approach and DiNEH using
Character Unigram and Stylometry feature sets.

E. Experiment V

In Table VII, we compared the DiNEH methods with four
well-known author identification systems (AISs). The first
column of Table VII lists the names of the methods that
are being compared. Recorded in the second, third, fourth,
and fifth columns are the accuracies of the five AISs and the
average accuracies of DiNEHs on the CASIS-25, 50, 100, and
1000 datasets. As in Experiments II-IV, the DiNEHs was run
for 30 times on the CASIS datasets. In terms of the AISs,
Keselj has the best performance on all of the datasets. In terms
of the DiNEHs, DiNEHBoW has the best performance on all
of the datasets. Also, DiNEHBoW has the best performance
overall on all of the datasets.

TABLE VII
PERFORMANCE COMPARISON

Algorithm CASIS-25 CASIS-50 CASIS-
100

CASIS-
1000

Koppel [9] 87.00% 74.00% 69.25% 51.55%
Teahan [10] 89.00% 78.00% 65.75% 55.15%
Stamatatos [11] 10.00% 3.01% 3.00% 01.78%
Benedetto [12] 75.00% 65.00% 40.75% 28.00%
DiNEHuni 92.10% 80.90% 77.45% 62.43%
DiNEHsty 98.10% 94.80% 87.85% 79.40%
DiNEHBoW 99.00% 98.50% 95.75% 96.22%

F. Experiment VI

In Table VIII, we compared DiNEH methods with four well-
known author identification systems (AISs) and six different
CNNs. The first and third columns of Table VIII list the names
of the methods that are being compared. Recorded in the
second, and fourth columns are the accuracies of the five AISs,
six CNNs, and the average accuracies of DiNEHs on the C50
dataset. On the C50 dataset, the DiNEHs run a total of 30
times. In terms of the AISs, Teahan has the best performance
on the C50 dataset. In terms of the DiNEHs, DiNEHBaseline

has the best performance on the C50 dataset. In terms of the
CNNs, CNNword multichannel has the best performance on
the C50 dataset. Teahan has the best performance followed
by DiNEHBaseline. In our analysis, we saw that reducing the
number of features on the C50 dataset has an adversarial effect
on the C50 dataset.

TABLE VIII
PERFORMANCE COMPARISON

Algorithm C50

Koppel [9] 59.72%
Teahan [10] 69.16%
Stamatatos [11] 18.18%
Benedetto [12] 60.84%
CNNword rand [19] 60.32%
CNNword static [19] 65.60%
CNNword non static [19] 66.48%
CNNword multichannel [19] 67.28%
CNNchar 1 [20] 60.60%
CNNchar 2 [20] 64.00%
DiNEHuni 44.28%
DiNEHsty 48.88%
DiNEHBoW 64.45%
DiNEHBaseline 68.76%

VII. CONCLUSIONS & FUTURE WORK

In this paper, we introduced a distributed neuro-evolutionary
hybrid for Author Identification which was referred to as
DiNEH. Our results show that DiNEH scales well to datasets
with larger numbers of authors by evolving a distributed



feature mask. We compared the DiNEH with four well-known
AISs and six CNN variants. DiNEH had the best performance
on all but one dataset (C50) both of which had 50 or fewer
authors. Our future work will be devoted towards developing
DiNEHs that combine Bag-of-Words, Stylometry, Character
N-grams, and other types of features.
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